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Abstract. In this work we develop three new operators to cut a volume
surface composed by a simplex mesh that envelops such volume. These
operators are based on remove the cut edges and reorganizing the mesh
connectivity which, in turn, implies inserting new edges and reordering
the faces’ edges and edges’ vertices. In order to test these operators we
perform two simulations: in the first one a cylinder is cut, and in the
second simulation a non-linear deformation with rupture is calculated
over a sphere, thus the sphere is broken when are applied external forces.
We also discuss the non-linear deformation model that we used in the
second experiment.

Keywords: surface cutting, simplex meshes, surface deformation, non-elastic
model, physically based simulation.

1 Introduction

The simplex meshes are a relatively new form to represent surfaces. Using sim-
plex meshes allows some operators [1] for gluing other simplex meshes to con-
struct more complicated models; such operators only change the links among
the different elements that composes the mesh (vertices, edges and faces).

In this work three new operators are introduced, the split operator, that
changes the genus of the mesh (i.e. the number of “holes” in the model) and
outputs two distinct meshes; the connectivity operator, that checks if the mesh
is already split; and the cutting operator, which, in turn, removes an edge from
the mesh and re-orders its vertices and faces (and it possibly modifies the mesh
genus). In order to implement these operators, we develop four algorithms.

Also, we apply external forces to deform the mesh using a non elastic defor-
mation model over every edge in the mesh. In previous works [1,2] only was used
a completely elastic model to deform a simplex mesh. We develop a non-elastic
model with rupture based on a linear function and an exponential part which
acts as the plastic region for the material, and with the rupture part itself.

To test our results we present two experiments: for the first one, a cylinder
is built and some edges are removed until the model is split in two halves and
enables the manipulation by the user of each part, one independently of the
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other; the second experiment uses the non-elastic model in a sphere, an internal
force is applied internally to deform it until the sphere is broken.

2 Previous Works

The representation of a volume’s surface has been done with one of three kinds
[3]: a triangular mesh [4], implicit representations (such as splines or hyper-
quadrics), and simplex meshes [1,5,6]. The research had been primarily concen-
trated on the first two, leaving the simplex meshes to a side method.

Principally the research with simplex meshes had been developed by Delingette
[7], fundamentally to model some human [8,2] and mouse [9] organs. Delingette
proposed some operators to modify the vertex or the edges connectivity to obtain
a new mesh gluing basic forms.

Some research was performed about the problem of cutting the volume tetra-
hedrization, but not had used the simplex mesh from its surface [10]. Another
work had been conducted towards triangle meshes, modeling the 3D surface and
its properties and manipulation [9].

3 Description of the new operators

A simplex mesh has a constact connectivity. In this work we use a 2-simplex
mesh in which every vertex has only three neighboring vertices.

Now, we will describe the algorithms which conforms the developed oper-
ators, the algorithms 1 and 3 are used by the edge remove operator (and its
corresponding faces), the algorithm 2 represents the connectivity operator, and
the algorithm 4 represents the split operator.

The algorithm 1 shows the steps taken to remove one edge from the mesh.
In Fig. 1 we can see the used notation.

Algorithm 1 Edge remove
Require: A simplex mesh (S), and the edge to remove (A)
Ensure: Removed adjacent faces to the removed edge

Find out the E’s adjacent vertices (V1 and V2)
Find out the V1 and V2’s adjacent vertices (V3, V4, V5 and V6)
Remove adjacent mesh faces to E (F1 and F2) using algorithm 2
Verify if there is some special case, if so, proceed to normalize the edges, so there is
not a triangle adjacent to the edge E
Remove E
Add the two new edges (E1 and E2)
Modify the opposite faces to E (F3 and F4)
Remove V1, V2, E3, E4, E5 and E6
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Fig. 1: Notation used in algorithm 1, F1 to F4 are the faces involved in the process, E the
edge to be removed, E1 and E2 the new edges to be added, E3 to E6 the edges that need
to be removed, V1 and V2 the vertices to be removed and V3 to V6 the vertices involved in

the process but not removed

Algorithm 2 checks if the connectivity is preserved between two mesh’s edges.
This algorithm is used whenever an edge is removed from the mesh (it cuts from
the geometrical model) to verify if the iterative process stops. A model who has
been split in two parts will generate two different meshes and each one will be
independently iterated.

Fig. 2 shows the edges where it is necessary to check the connectivity (these
edges are E1 and E2). If both edges are conected then there is a path between
them. For cheking this path one vertex from the edge E1, say V2, is chosen. Then
the algorithm runs going in the next order: to the edge E3, vertex V3 is chosen,
go to the edge E4, to vertex V4, to the edge E5, to vertex V5 and, finally, to the
edge E2, therefore a path exists and E1 and E2 are connectted.
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Fig. 2: Following edges to know if the mesh is already split
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Algorithm 2 Verify the connectivity between edges

Require: Simplex mesh’s edges (SE) and the two edges to test (E1 and E2)
Ensure: Verify if the mesh was split in two parts

Set E to edge E1

Choose a vertex, V1, from E
repeat

Find the opposite vertex from E, V2

Find the adjacent edge to V2, which does not have a face and is not E
Set this edge to E
Set V2 to vertex V1

until Reach the edge E1 or E2

if Reached the edge E2 then
The mesh was not split

else
The mesh was split

end if

The algorithm 3 shows how the face between two meshes is deleted. Fig. 3
shows the notation used, and Fig 4 shows the mesh after the face has been
removed, the mesh could be split in two separate meshes, at that point we use
algorithm 2 to check this fact. Finally, if the mesh is already disconnected, we
use algorithm 4 to compute the two new meshes.

Algorithm 3 Remove jointed face

Require: Simplex mesh (S, faces –SF –, edges –SE– and vertices –SV –) and the face
to remove (F )

Ensure: Removed face and one, or two disjointed, meshes
Remove the face edges (E1 and E2) which are adjacent to empty faces (faces already
removed before before)
Use algorithm 2 to verify if the connectivity is preserved, using the new created edges
if Connectivity was lost then

Use algorithm 4 to get the new two meshes
end if

The algorithm 4 shows how we get two disconnected meshes from a single
one. This algorithm takes a complexity order of O(nm), where n is the number
of faces in the original mesh (SF ) and m is the mean edges in each face (once
every time approximately 6) because it processes each face and edge.

Three special cases must be treated separately for the case when a edge is
deleted. These cases always involve triangles in the mesh (see Fig. 5), and the
algorithm collapses in triangles until it finds a configuration without them, or
get an empty mesh.
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Fig. 3: The mesh with the face to be removed (edges E1 and E2 will be deleted also)
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Fig. 4: The mesh without the deleted face
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Fig. 5: The three special cases in the algorithm to remove an edge
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Algorithm 4 How to get two disjoint meshes

Require: Simplex mesh (S, faces –SF –, edges –SE– and vertices –SV –)
Ensure: Compute one or more disjoint meshes

Let LF be a face’s empty set, LE an edge’s empty set, and LV a vertex’s empty set
Set all faces of SF as non-processed
while There are non-processed faces do

Borrow the next non-processed face, Fi, from SF

Put face in a new face list, LF
Fi

, do the same with its edges, LE
Ei

, and its vertices,
LV

Vi

Put face in the processing queue, Pf

while The processing queue, Pf , is not empty do
Get the next face, Fj , from the processing queue, Pf

for all Adjacent face to Fj , that are not in any list (Fj,k, edges, Ej,k and vertices,
Vj,k) do

Put Fj,k in the Fj list (LF
Fj

)

Put Ej,k in the Ej list (LE
Ej

)

Put Vj,k in the Vj list (LV
Vj

)
Put Fj,k in the processing queue, Pf

end for
end while

end while

4 Experiment cutting a cylinder

We used a cylinder to test our new operators, this cylinder is show in Fig. 6.
The cutting process starts by removing the first edge from the cylinder’s central
strip (see the upper left of Fig. 7), the algorithm 1 is applied to delete the edge
and refresh the vertex coordinates and the configuration of the affected faces.

Fig. 6: Original cylinder

Once the first edge has been removed, we proceed to remove the second
edge (see upper right of Fig. 7), here two faces were removed and one of them
is adjacent to the intended edge, so this fact must be taken into account to
avoid delete the non-existent face. Also, the corresponding vertices have one less
adjacent face and it is necessary to take care of that, indicating that the face is

Algorithms for Cutting Surface Composed by Simplex Meshes  95



no more in its list of neighbor faces. In Fig. 7 we can see one thin central section
produces by the cutting process, this is a consequence of the process itself and,
also, of the vertex moving to the barycenter of its three neighbors.

The process goes ahead, deleting edges until the last one from the central
strip must be removed; then the mesh clearly must be split in two parts, as can
be seen in lower left Fig. 7.

Once the mesh has been cut in two meshes, it is possible to independently
manipulate both (see lower right of Fig. 7).

Fig. 7: The cutting process

5 Deformation model with rupture and second
experiment

To deform a simplex mesh we attach a simple mechanical system composed by
a mass, a spring, and a dashpot, to each mesh edge. This system is represented
by Eq. ((1)):

mẍ + bẋ + kx = fext (1)

where m is the mass, b is called damping coefficient, and k is the spring stiffness
coefficient. Eq. ((1)) is solved numerically to obtain the elongation x by using
the finite differences method, because it takes less operations and its result is
enough for our purposes. The system is in a steady stable at rest, so there are
not external (fext) or internal forces applied to it.

This elastic model represented by Eq. (1) models a perfectly elastic mate-
rial, i.e., a material whose graph of elasticity is linear. We develop a non-linear
model using a completely inelastic material, with one segment linear, another
exponential, and if eventually the force is too much, the material breaks. The
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linear model is represented fint = k · x, where fint is the internal force stored in
the spring. The non-elastic model is:

fint(x) =

⎧⎪⎨
⎪⎩

k · x if x ≤ l1,
k · l1 + eγ(x−l1) − 1.0 if l1 < x ≤ l2,
0 if l2 < x.

(2)

where γ is a parametric value (if we want a soft transition between the linear
and exponential parts γ must be equal to k, so the first derivative in the point
where x = l1 would be equal), l1 is the desired elongation limit (which depends
on γ) and l2 is the elongation at which the edge breaks.

At Fig. 8 we show, when the value of γ = 0.05, how the l1 affects the max-
imum elongation the element can take (the model parameters are m = 0.01,
d = 0.01, k = 0.01, fext = 0.01), as we can see with this value of γ the maximum
elongation is effectively limited, but, is greater than l1, if we increase γ this value
would be closer to l1.
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Fig. 8: Comparing the deforming limits at different values of l1

The break limit (l2) is defined as a factor that represents the maximum length
that an element can have without rupture, at that length the element breaks;
that factor represents the maximum stress the element can sustain in the point
of rupture, above which the internal force is zero.

The second experiment is apply an internal force, as an internal pressure, to a
deformable sphere until it breaks. The sphere used is shown in Fig. 9. In Fig.e 10
we can see the sphere when it breaks and the deforming process is stopped. We
can see when the applied force deforms the model more or less in a symmetrical
way, except at six rectangles located in the middle strip of the sphere.

The external force in each vertex is computed based on the influence area of
it, as shown in the Eq. ((3)), where ρ is a constant which represents the inside
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Fig. 9: Original sphere model

Fig. 10: The model when the internal pressure breaks it.

pressure, Av is the influence area of the vertex v and AT =
∑

∀v Av. Each value
of ρ yields a different breaking pattern, as shown in Fig. 10, where the values
are 8.7, 15.2, 16.2, 16.4, 17.3, 17.4, 23.0, 50.0 and 150.0, respectively.

fext = ρ
Av

AT
(3)

6 Conclusions and future work

We have developed three new operators that allow cut volumes built with a
simplex mesh. The first operator computes if a simplex mesh has lost its con-
nectivity, the second operator split a simplex mesh in two halves, and, the third
operator deletes an edge from the mesh and their corresponding faces.

The way we compute the simplex mesh connectivity has an acceptable com-
putational complexity level, because we only check if it is keep between the two
new added edges, so it only has to check a small set of edges. The split operator
case needs to operate over all the simplex mesh, because we have no information
about the faces connectivity, only its adjacency, so we could not optimize it well,
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but we are trying to develop a new algorithm to directly split the mesh when
removing the edge, without travel through all the faces.

The described operators have deficiencies (the cutting operator needs to take
care of the face’s and vertices’ ordering, the connectivity operator needs to oper-
ate in edges with faces removed, and the split operator needs only a performance
boost), over which we are already working and there is hope we get a complete
definition of them, so they could operate in whatever simplex mesh we throw at
it.

Our non–elastic deformation model has a good behavior as we expected,
when it is applied to a surface simplex mesh.

As future work, we will extend operators to cut volumetric models based also
on simplex meshes, so they can operate in this new domain, and, apply this same
elastic model to it to see if it fits nicely in such structure or needs considering
some other features to shows a well behavior.

We are thinking in apply the developed work to visualize and to simulate
human organs in surgery processes.
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